Properties of the Solutions to the Monge-ampère Equation

نویسنده

  • LILIANA FORZANI
چکیده

We consider solutions to the equation detDφ = μ when μ has a doubling property. We prove new geometric characterizations for this doubling property (by means of the so-called engulfing property) and deduce the quantitative behaviour of φ. Also, a constructive approach to the celebrated C-estimates proved by L. Caffarelli is presented, settling one of the open questions posed by C. Villani in [11].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Properties of the Sections of Solutions to the Monge-ampère Equation

In this paper we establish several geometric properties of the cross sections of generalized solutions φ to the Monge-Ampère equation detD2φ = μ, when the measure μ satisfies a doubling property. A main result is a characterization of the doubling measures μ in terms of a geometric property of the cross sections of φ. This is used to obtain estimates of the shape and invariance properties of th...

متن کامل

ON A PRIORI C1,α AND W2,p ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION IN THE GAUSS CURVATURE FLOWS

This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .

متن کامل

Normal forms for parabolic Monge-Ampère equations

We find normal forms for parabolic Monge-Ampère equations. Of these, the most general one holds for any equation admitting a complete integral. Moreover, we explicitly give the determining equation for such integrals; restricted to the analytic case, this equation is shown to have solutions. The other normal forms exhaust the different classes of parabolic Monge-Ampère equations with symmetry p...

متن کامل

W Estimates for the Monge-ampère Equation

We study strictly convex Alexandrov solutions u of the real MongeAmpère equation det(∇2u) = f , where f is measurable, positive, and bounded away from 0 and ∞. Under only these assumptions we prove interior Wregularity of u.

متن کامل

Regularity of Subelliptic Monge-ampère Equations in the Plane

We establish a C∞ regularity result for C1,1 solutions of degenerate Monge-Ampère equation in R2, under the assumption that the trace of the Hessian is bounded from below.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004